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Abstract-A closed-form solution is given for the problem of a spherical cavity in an infinite elastovis­
coplastic medium with kinematic hardening, when the cavity is subjected to an internal pressure that varies
in any prescribed way.

Under certain assumptions this problem takes account of the unit weight of the medium, and is
particularly applicable to the deep underground storage of natural gas in rock salt.

Some typical loading cases are shown.

NOTATION

r. e. Ii' spherical coordinates
<T". <T•• = <T.. radial and lateral principal stresses

aM) radial stress applied at the wall of the cavity
u radial displacement

E,p radial viscoplastic deformation
( ) total derivative with respect to time
E. v elastic constants (Young modulus. Poisson's ratio)

E' strain-hardening modulus
TJ viscosity constant for viscoplasticity
S initial uniaxial yield stress
x radius of the region in viscoplastic loading
e maximum value of x during its evolution

a,lI) a,,(e, t)
a E' E

;+21)(I-v)
T a-I (time constant)

h(x l
) intermediate function. h(x

l
) = ~ Xl + 1TJ(~- v) (I + Log Xl)

L. U Indices:
L = local viscoplastic loading (with respect to the frontier x)
U = local viscoplastic unloading (with respect to the frontier x)
Example: IL: last time when the frontier has expanded to r = x

tv: last time when the frontier has regressed to I = x

I. INTRODUCTION

In quasi-static viscoplastic problems, few solutions are available in the literature which do not
involve onerous numerical calculations. In the case of spherical symmetry, e.g. the problem of
a spherical cavity in an infinite medium, solutions in closed form have been given by
Wierzbicki[7], Aufaure[l], Tijani[6], for the special case where the pressure in the cavity was
assumed to vary in a monotonic way. In this paper, a closed form solution is given for a quite
general variation of the pressure and for a Bingham material with kinematic hardening. For the
sake of simplicity, we suppose the medium to be infinite, but an extension of the calculation
to a medium having a finite outer radius, or to the problem with cylindrical symmetry is quite
easy.t

This problem is specifically appropriate to the deep underground storage of hydrocarbons in
rocksalt: Laboratory investigations on rocksalt , as well as analysis of in situ data on such
storage caverns, has led to the conclusion that the rocksalt medium behaves as a viscoplastic
material[2-8]; moreover, the pressure in the cavities may vary with a high amplitude, as it does
in those filled with natural gas.

tThe theoretical framework of this study is given in more detail in Mandel [2] and Q. S. Nguyen [4J.
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2. DESCRIPTION OF THE PROBLEM UNDER STUDY

We consider the following basic configuration (Fig. 1): a spherical cavity of unit radius is
located at depth h below the ground surface, and is filled with a fluid of the same unit weight y

as the medium. In a first step, the stress state inside the medium is taken to be hydrostatic:

This means that the pressure in the cavity is given initially by:

Later on, we shall allow this pressure to vary in any prescribed way. As has been shown by
Mandel [4], such a problem can be solved as a problem in a weightless medium, when
substituting for Uij, the stress tensor a1 i:

In this way, the gravity term y disappears in the equation of equilibrium although the flow law,
which does not depend on the mean stress, is unaffected by the transformation.

Therefore the initial stress state is virgin, whereas the cavity is submitted to the time­
dependent pressure:

J1'li (t) = Pi(t) - yh.

Since we are concerned with deep cavities (e.g. h = 20), the displacements at a distance h
from the center of the cavity are negligible, and the stress state can be considered there also to
be virgin.

We can therefore consider the equivalent problem of a large hollow sphere, free from stress
on its external surface (r = h), and submitted to the pressure J1'li(t) on its internal surface
(r = 1). For the sake of simplicity, the external radius is supposed here to be infinite, but yh is
still taken as the geostatic pressure at the depth of the cavity.

Remark. The hypothesis of an initial hydrostatic stress state is rather reasonable for a
viscous material with a small yield stress, such as rocksaIt at great depth [2-8]; but the
hypothesis of the equality of the densities of the fluid (natural gas.....) and the medium can be
criticized. For this reason, the solution proposed here may be considered as an approach to the
basic problem.
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Fig. I. The basic geometry of the model.
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2.1 Equations of the schematized problem
Since we have a spherical symmetry, we shall use spherical coordinates (r, 9, 'P), and note

the principal stresses by (T" and (TfPtp = (TBII> and the radial displacement by u (Fig. 2). The
different parameters being functions of radius r and time t, the equations that describe the
problem can be written as f<,Hows:

• Equations of equilibrium:

(1)

Boundary conditions:

(T,,(1, t) = (Tj(t), with: (Tj = - P~.

• Decomposition of the strain:

(2)

(3)

where E, v are the Young Modulus and Poisson's ration, and Eup is the radial viscoplastic strain.
Indeed, we suppose that the material exhibits an instantaneous elastic response and a

viscoplasticity with kinematic strain-hardening, as schematized by the unidimensional rheolo­
gical model in Fig. 3 (the hardening element E' may be taken to be zero in the calculation; in that
case, we have the Bingham model). In the three-dimensional equations, the slider of the
rheological model is represented by a Tresca criterion.

The viscoplastic strain Evp can then be written as follows; noting 'I' = (J'" - (TfPtp - E'Eup, we
have:

a)

b)

a;;e = 0 if - S ~ 'I' ~ S; j
aEve =!('I' _ wS) otherwise, where w =sgn 'I'
at 1"/

(4)

S is the initial yield limit; E' the strain hardening modulus; and 1"/ the coefficient of viscosity.

\
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Fig. 2. Geometry of the equivalent model and notations.
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s

Fig. 3. Rheological model.

2.2 Notations
Once the yield criterion has been exceeded, a viscoplastic region (af.lplat~O) will develop

from the cavity inside the medium. Later on, this region may regress and eventually disappear,
leaving residual strains in the volumes it has reached.

In the general case, three regions can be distinguished in the medium (Fig. 2).
If we note by x the outer border of the viscoplastic region, and by e the outer border of

those regions which have undergone viscoplastic strains (e = max {x}, 'rJt < t(x)), we have:

Region 1. 1",:; r ",:; x af.up -1..0 f. -1..0at T upT·

Region 2. x",:; r"':; e af.up = 0 -1..0at f.lpT .

Region 3. e"':; r ",:; 00 a;;p = 0 f. lp = O.

We note by U e = urr(e, t) the radial stress on the frontier: r = e.

2.3 Methods
The solution is obtained by determining the boundary x(t), from which the unknown

variables are then easily calculated. An example of the variati-on of x with time is given in Fig.
4; various cases can be distinguished:

-when the viscoplastic loading region develops in a virgin medium, i.e. for the first loading
(x =e), the unknown x is the solution of an ordinary first order differential equation; this holds
for AB, DE, KL.

-Otherwise, in the general case, we shall prove that:

1 dx' ,
H(x) dt = F(x') + O(t),

F G J

l

I

'(9
-~---o

t-
Fig. 4. Evolution of the visc,)plastic loading region.
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where H(x 3
) and F(x 3

) integrate the history of loading, as functions of the successive moments
t '(x), t2(x) . .. t"(x) when the viscoplastic loading border overtake point x; this holds for BC,
EF, ... (i <0) or CD, GH, ... (i >0 and x < e), Fig. 4).

3. INTRODUCTION OF AN INTERMEDIATE VARIABLE e3a,

The elimination of (F<p<p and Err from (1) to (3) leads to an equation between u and (F" which
we can integrate from r to 00:

(5)

C(t) is a variable of integration which can be expressed as a function of (Fe = (T,,(e, t), by taking
into account that u must be continuous through r = e. Since we have, by the elastic solution:

eqn (5) yields:

U 1-211 3(1-11) 3
"=-E-arr-2"-E-e ae· (6)

From (6) and (3), the radial viscoplastic deformation can be written in a similar way, as a
function of arr and the unknown quantity e3ae :

(7)

Note that (7) is true every where in the medium (the flow law (4) has not been used yet). In
particular, we can check that Erp == 0 in zone 3, which is elastic.

If there is a zone which undergoes viscoplastic loading (zone l) we also have, for r E [I, xl,
eqn (4) which can be written as follows:

~=![_!:.aa"_E/E -ws]at 'T/ 2 ar rp •
(8)

One or the other of the functions Err' a" can now be eliminated from eqns (7) and (8) to
obtain an equation involving the stress arr or one involving the strain Eup• Taking into account the
boundary conditions or r = 1 and r = x then yields an equation for the unknown (e 3ae ).

Remark on the variation of e3aJ

We observe that:

-either e is a function of time; in this case, x = e, and the points at the border e are submitted to
a first viscoplastic loading, so that eqn (4) yields:

Then, from the elastic solution we obtain that a e remains constant:

a e == a rr ( e, t) == 2wS.

-Or e is constant; in that case, x < e and ae is a function of time. These considerations show us

that :t (e 3ae) will mean either e3 :t ae (e constant) or ae ddt e3 (ae constant).
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4. RELATIONS OBTAINED ON r~x (REGION 1)

4.1 The equation involving stresses
We eliminate f up between eqns (7) and (8), thus obtaining an equation for the stress u,,(r, t):

~[au"+~] = -a ~" _3E'~_ wES 1
at ar r ar 1/ r 1/ (1 - v) r

where

E' Ea=-+---
1/ 21/0- v)"

Integrating (9) for fixed t, between r = 1 and r = x, we have:

(9)

(IO)

Notice that u"O, t) = Uj(t) and that (alat)[urr(1, t)] =aj(t) (the dot means total derivative
with respect to time). Moreover, we shall prove that (see Appendix 1):

a [ 1 d ]
at ur,(x, t)J =? dt (e- ue );

hence, eqn (0) reduces finally to:

We now distinguish between two cases:

(II)

(12)

(a) Case when e varies with time (e = x and Ue is constant). The points at the border e are
submitted to a first viscoplastic loading. Equation (12) reduces to the formula obtained by
Tijani[6]: e3 is a solution of the first order differential equation:

(13)

(b) The general case. Now, consider e+ x.
First, note that (d/dt) u,,(x, t) can be expressed as a function of e3

U e and x, since we have:

aId 3 ( ». - u,,(x, t) = ~ dt (e ue) (see 11 .
at x

• The left side of (9) vanishes for r = x, since (afvplat) (x, t) = 0; this yields:

~Urr(X, t) = _1. [3E'~+ wES 1.].
ar a 1/ x 1/0- v) x

Let us now differentiate (12) with respect to time; according to the remark above, the
quantity (d/dt)u,,(x, t) can be eliminated, and we obtain:

(14)

We have thus obtained a differential equation between x3 and e3ue (notice that x has
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disappeared from this equation); another relation is needed between these two variables, which
will be obtained in a later paragraph. The reader will remark that (14) includes the derivative of
(13), when setting x == e.

4.2 The equations involving the strain fop

Let us now eliminate u" between (7) and (8), obtaining an equation for fop:

(15)

(a) Viscoplastic local loading followed by local unloading. Let tL (load) and tv (unload) be
two moments defined by: (Fig. 5) (the loading is not necessarily a first loading)

x(td == x(tv)

i(td > 0, i(tv) < 0

x(t):h(td for tL < t < Tv.

Then we have:

~ (x(td, td == 0

a;;p (x(tv), tv) == O.

We can then differentiate (15) with respect to time keeping r == x(td == x(tv ) fixed:

t .c: t .c: t . a
2
f op (x(td, t) + afop(x(td, t) _ 3 d (3 )

L ~ ~ v· at2 a at - 2T/x3(U dt e Ue ,

this can be multiplied by exp (at) and then integrated between tL and tv:

( flu d
0= 'L exp(at)dt(e

3
ue)dt

x(tv) == x(td·

Considering this integral as a function of the upper limit tv, we differentiate it:

(16)

~ ----- dt
0== exp (a tv )e3ue(tv) - exp (atde

3
ue(td dt~

Hence:
~

exp(atv )e3ue(tv)

x3(tV )

>c(t)

~

exp(atde3Ue)td
(17)

)(

tL t ..

Fig. 5. Increase and decrease of the elastoviscoplastic border.
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Fig. 6. Decrease and increase of the elastoviscoplastic border (a) the \iscoplastic zone does not vanIsh
between tv and tL, (b) the viscoplastic zone vanishes between tv and tl

(b) Viscoplastie local unloading followed by loea/loading. Let tv and tL be two moments
defined by (Fig. 6):

t < tv dE vp ( HO
iit t

iiEvp (tHO
at

sgn aEvp (t) == WI!at

aEvn (---=- t) == 0 or'at .

Note that in Fig. 6(a), Wv == W,; but WI. may be equal to ± Wu in Fig. 6(b), (see also Fig. 4).
Equation (15) then gives:

(18)

Differentiating this expression with respect to x3 (or with respect to t u as in (17)), we obtain
an expression similar to (17):

e\TeUV) e
3
aAtd == 25 (w[J - wd

x3(t U ) ;3(td 3

5. EVOLUTION OF THE VISCOPLASTIC LOADING ZONE IN THE GENERAL C\SF

Let us return to eqn (14) and take into account the results obtained in 4.2.

5.1 Viseoplastie local loading followed by local unloading

t L < t < t u (Fig. 4).

(19)

We multiply (14) on each side by exp at, and ihtegrate it between t l and tt

~ ~

exp (atu)[uj(tu) - e3u e(tu)] - exp (atd[uj(td- e3u eUdl ==

E flU (1)~
21)(1- v) tL exp (at) ? - 1 e u) dt.

The right side of this equation is zero, due to (17). Indeed, if we suppose Xmax to be the only
maximum of x between tL and tu, we deduce from (17), by changing the integration variable, that
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any integral of the following form vanishes:

The same proof can easily be extended to the case where there exist several extrema for x
between tL and Tu•

Hence:

(20)

When combining (20) with (17) to eliminate e3a.(tu ) we obtain x3(t U ) finally as a function of
t u and of quantities which have already been calculated at the moment tL :

,;J(tu) = ~(td { 1+<T(tu) exp~ - td - <Tj(td.}

e- a-.(td

5.2 Viseoplastie local unloading followed by loealloading

tu < t < tL (Fig. 5).

Proceeding in an analogous way as for the calculation of (20), we have:

(21)

(22)

(We suppose once more, to simplify the writing, that x3 has but one minimum between t u and

tt->
We can then distinguish two cases:

-x min 4: 1 hence Wu = WL, and the integral is zero (Fig. 6a);
_x 3 min = 1 and it may be the case that Wu = -WL (Fig. 6b).

We can therefore write formally x3 min = 1 in eqn (22); if we note:

h 3 E' 3 E 3
(x)=~x +27j(1_v)(1+Logx),

then the integration of (14) between tu and tL yields finally:

...---.. ...---..
aaj(tu) +<Tj(tu ) - e3a.(tu) - wuh(x3) = aai(td +<Ti(td - e3a.<td - wLh(x\ (23)

As in the first case, we can eliminate (e3a.(td) between (23) and (19) to get ?(td as a function
of tL and of known quantities already calculated at the moment tu:

55 Vol. 19. No. 12-8
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(24)

The reader will notice that (23) reduces to the first loading case (formula (13)) if we set the
left side equal to zero.

6. CONCLUSION

6.1 Numerical procedure
The preceeding results allow us to calculate the variation of x3 with time as the solution of a

first order differential equation. Referring to Fig. 7.
(a) Between A and B, eqn (13) can be used.

(13)'

since a;(t) is a given function; the solution of this equation, together with the relevant initial
conditions, can be obtained as h 3 = It(t) or tl = F[I(X J

).

(b) Between Band C, eqn (21) can be used.

~3 == X3(td { 1+ &";(t) expa~ td - <T;(tdl

eJu,(trJ

(21)'

The solution tl == r'(x) calculated in (a) above must be used here; then this eqn (21)', may be
solved to obtain xuJ == gu(t) or tu == g{jI(X3).

(c) Between C and D, eqn (24) can be used.

~ . . 25 J
e u,(tu )+ aeri(t) + aj(t) - aa;(tu)- U(tll) +3 (wu - wd hex )

....---....
eJu,(tll) + 25 (WI - WlI)
~ 3
x3(t u)

(24)'

Once more, the solution tu = gu- I
(X

3
) calculated above must be used here, etc...

When substituting tL =It- I
(X

3
) into (21)' or tu =gu- I

(X
3
) into (24)' we obtain the form

l

Fig. 7. Summary of different solutions for the evolution of x'(t).



Response of a spherical cavity in an elastic viscoplastic medium under a variable internal pressure 1045

5

o T = 3.57

° 5 10 15

10

~. .

~ CD T=0.02

5 - Av
V

Fig. 8. "Loading during a finite interval of time", (a) high viscosity, (b) low viscosity.

15

Av
V

Fig. 9. "Cyclic loading".
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Fig. 10. "Evolution of the viscoplastic frontier vs time".
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mentioned in 2.3:
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dx3 F(x 3
) +G(t)

dt H(x 3
)

It may be expressed explicitly as a function of successive moments tL and tu when the frontier
of the viscoplastic zone has overtaken point x (see the recurrence formulas in Appendix 2).

If the time dependence of the stress CTi(t) applied at the wall of the cavity is not simple, the
solutions of eqns (13)', (21)', (24)' must be in general calculated on a small computer. At each
step, the calculations of [tL(X

3
) or t[(x 3

)] must be stored.

6.2 Numerical examples
The following variables have been plotted on one diagram as functions of time: the function

X(t) standing for the evolution of the viscoplastic frontier, the associated volumic variation
(6 VI V)(t), and the prescribed stress (Ti(t).

The three functions are plotted in a dimensionless form, by taking their respective values to
be equal to unity when viscoplasticity appears in the medium for the first time.

Thus the three curves pass through the same initial point; moreover, if we allow the
viscosity constant to approach infinity, it can be shown that these curves become identical. This
means that the behaviour of the medium is then elastic.

Two kinds of applied stress CTj(t) have been tested:
• Figure 8. CTj(t) increases to a maximum and then decreases to zero, in finite interval of time
We can observe two different responses of the structure depending on the relative viscosity

of the material, or more precisely, on the value of the time constant T:

T = 0: I == 2T/(l- v)/(E + 2(1 v)E').

A typical plastic-like response for a rather small value of T is seen in Fig. 8(b).
• Figure 9. Cyclic variation of (T,( t)
The evolution of the viscoplastic zones suggests an elastic shakedown of the structure, after

a great number of cycles.
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APPENDIX 1

Proof of the formula (ll)
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Two cases must be distinguished:
a - x = e, then (f, is a constant (see 2.2), hence:

~(f, = 0 = f, (f,,(e, I) + efr (f,,(e, I).

a
But Eop(e, 0 =0 and at Eop(e, 0 =o.

Thus, from (8), we have:

a 2wSa, (f"(e, I) = --e-

and finally, from (AI):

(AI)

b - x+e, then e is a constant (see 2.2).
We will use the lellers E (elastic) and VP (viscoplastic) to distinguish the two regions delimited by the viscoplastic

frontier x = x(O. The different functions (0'", II. Eop, etc...) are separately definedAn each of the two regions: when necessary
we will distinguish (f;(r, I) and (f~p(r, I), etc. In the elastic region, the incremental behavior is of an elastic type, so that,
we have:

a E e) dat (f,,(r, I) =? dt (f,(I). (A2)

An identical relation will hold in the viscoplastic region, if we show that (a/ar)(f,,(r, I) is continuous across the
viscoplastic border x.

First, remark that (f,,(r, I) is continuous through x, and so is its total derivative with respect to time; thus:

(A3)

Moreover, the continuity of E,p through x, yields from (7):

a E a VPar (f ,,(x, 0 =a, (f rr (x, n.

combining this with (A3), we deduce that (mr)(frr(x, I) is continuous through x: the formula III) is then proved for the
viscoplastic side of r = x.

APPENDIX 2
Recurrence formulas

We consider a fixed point Xo which is subjected to several viscoplastic local loadings (see Fig. 10). tLk and tuk are th
moments when the k'h viscoplastic local loading begins and ends:

k k ~
tL < t < tu, at (xo.O+o

Or, put ill another way, if x = x(1) is the viscoplastic frontier:

Then equations (17) and (19) can be rewritten as follows:
---. ---.

exp (atu"e)(f,(tu") _ exp (0 tL")e)(f,(tL")

---.
e)(f,(tu"-') 2S( )

. +-Wn-W,,-I.

;J(tu"-') 3

(17')

(19)'
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Let 8" be:

From (17)' and (19)' we easily deduce:

P BEREST and D. NGUYEl'-MINH

(AA) .

By convention, Wo =0, 8, =O.
In a similar way, eqns (20) and (23) can be written as follows:

~ ~

cT;{tLn) - e3cr,ULn) = exp (alu" - alLn)(cTi(tU") - e3cr,Uun
)]

~ ------
acrj(lu")+ cTJlu") - e3cr,Uu") - w"h(.x 3

) = acr,(tn+') + cT,(("+I) - e3cr,(t"+I) - w"+,h(x\

These two equations (20)' and (23)' stand for the successive viscoplastic local loadings:

~

0= acrjUI
I
) + cT,(IL

I
) - e3cr,UL1

) - wlh(x
l
)

~ ~

'1j(lII) - e\r,(tll) = exp (a Il·' - (, tl.l)(cTI(tU') - e l cr,(lu'l

~ .----
acrj(tu1

) + cTjUU') - elcr,Uu') - wlh(x 1
) = a"j(l12) +cT,it t

2
) - el cr,(tL

2
) - w2h(x l )

---... ---...
acrj(lu"-I) + cTjUU"+I) - eJ",(lu"-I) - w"_,h(x l ) = acrj(lL") + cT,fl t ") - eJcr,(I!l- w"h(x 3

)

~ ~

cTj(lt") - e
l",t II") = exp (a tu" .- er IL")( cTi(lU") - e1",(tu")J

In order to eliminate aj -~, we multiply lines Lk and Uk by exp (er8") and sum the lines L, to L":

From (A4) we have:
~. 15-"

exp (a8" )e 3
",UL") ~ ~x3(ILl~ (wJ Wj-I) exp (a8j)

So that we can reduce our equation to:

(Aj)

(20)'

(23)'

LI

In a similar way, we can sum the lines L, to Un, eliminate e3",(tu") from (AS) and obtain:

~, exp (allk) { acrjUd - afTjUu
k

-
l ) - (Wk - Wk-l) [ h(x 3

) + ¥- .?Uu") ]} ~ -exp (all"+,)cTj(lu")

(A6) and (A7) are the general solution of the problem.


